Critical Survey of the Molecular Structure Determination by
the Use of Spectroscopic Data for SO,

Yonezo Morino,* Mitsutoshi Tanimoto® and Shuji Saito®

2Sagami Chemical Research Center, Sagamihara 229 and "Department of Astrophysics, Nagoya University,

Nagoya 464, Japan

Morino, Y., Tanimoto, M. and Saito, S., 1988. Critical Survey of the Molecular
Structure Determination by the Use of Spectroscopic Data for SO,. — Acta Chem.

Scand., Ser. A42: 346-351.

The equilibrium structure of the SO, molecule was calculated on the basis of the
second-order approximation, using recent accurate spectroscopic data. The ef-
fects of Fermi and Darling-Dennison resonance were eliminated from the rota-
tional constants of the excited vibrational states by the use of constrained least-
squares. This resulted in 7, = 1.43080(1) A and 8, = 119.329(2)°, which are the
most accurate values of bond distances and bond angles reported for triatomic
molecules. The inertia defect, A, = —0.00027(143) amu A?, was reduced per-
fectly to zero within its standard deviation, as required by the theory.

Dedicated to Professor Otto Bastiansen on his 70th birthday

Molecular spectroscopy and electron diffraction
are most powerful methods for molecular struc-
ture determination. The source of information
for the former is the rotational constants ob-
tained by the analysis of either infrared or micro-
wave spectra. In contrast to electron diffraction,
the application of spectroscopic techniques is
rather limited to simple molecules, but it has a
merit in giving accurate bond distances and bond
angles. In this article we discuss the limits of
accuracy of the results obtained and examine the
precautions necessary for arriving at accurate re-
sults.

Calculation procedure

Since a molecule always vibrates about its equi-
librium position, even in the ground state, we
should eliminate vibrational effects in order to
obtain the structure at the equilibrium position.
The rotational constants are usually expanded in
vibrational quantum numbers to the second or-
der:

AWv,vs) = A, — D, (1R2)a(v+1/2)
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+ 2, (14, (vi+12)(v,+172). (1)

y

The A,, and similarly B, and C,, are thus ob-
tained by combining a set of rotational constants
of nine or more vibrational states for a triatomic
molecule. This is a formidable restriction for ap-
plying the procedure, because such a complete
set of data is rarely available. The SO, molecule
is one of the most fortunate cases: the vibration—
rotation spectra have been precisely analysed for
ten vibrational states by the efforts of many spec-
troscopists.'™

When we want to make use of data obtained by
different observers, precautions should be taken
for the proper treatment of the data. First to be
mentioned is the difference between the rota-
tional constants obtained by the infrared analysis
and those obtained by the microwave technique.
From microwave spectra we obtain the rotational
constants of a vibrational state, while the infrared
method yields the difference between the rota-
tional constants of the upper state in a transition
and those of the ground or other lower state. This
means that the rotational constants obtained by
the latter method always depend on the rota-
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Table 1. Rotational constant increments for vibrational states of SO, in the Nielsen approximation (in MHz).#

State A B C Ref.
(100) 32.8173(76) —49.8827(29) —42.3533(29) 3
(010) 1176.2487(87) 2.3086(41) —15.8354(40) 1,2
(001) —620.4991(41) —34.9137(31) —32.9290(30) 3
(200) 63.4572(1540) —99.5264(290) —84.4691(261) 4
(020) 2407.1121(450) 4.1084(94) —31.6650(89) 2
(002) —1233.7331(1020) —70.0887(159) —65.7213(160) 4
(110) 1215.3292(2400) —47.4440(412) —57.8053(452) 4
(101) —595.2052(197) —84.6140(37) —76.1287(37) 4
(011) 536.6789(318) —32.6802(48) —49.2137(46) 3
(030) 3696.9729(2402) 5.9411(208) —47.9259(676) 4

A(000) B(000) C(000)

60778.5270(29) 10317.9370(13) 8799.8485(13) 1

“The uncertainties in the last digits (one standard deviation) are given in parentheses after each value.

tional constants of the ground or lower state as-
sumed for the analysis. In order to avoid irre-
gularities due to the choice of the individual ob-
servers for the rotational constants of the
reference state, we started the present calcula-
tions with rotational constant increments,
A(v,,v,5,v3) — A(0,0,0), etc., rather than with
rotational constants themselves. The rotational
constant increments we used are summarized in
Table 1. They were initially transformed to the
Nielsen approximation® by the procedure de-
scribed in the Appendix (vide infra).

The rotational constants for the (200), (002),
(110), (101) and (030) states were obtained by a
critical re-analysis of the previous microwave re-

sults.* In order to calculate the increments, we
used the rotational constants of the (000) state
reported by Helminger and De Lucia.'

(I) a; and y;; constants. We calculated the o, and
y;; constants by least-squares treatment of the ten
sets of rotational constant increments listed in
Table 1. In this process we eliminated surplus
contributions due to Fermi resonance as well as
those due to Darling-Dennison resonance,® as
will be described in the next paragraph. The re-
sults are shown in Table 2.

(IT) Elimination of the Fermi and Darling-Denni-
son Resonance Contributions. The rotational con-

Table 2. o; and ; constants for SO, with the effects of Fermi and Darling-Dennison resonances eliminated

(in MHz).
A ol B oP : c o®
o —35.486 1.973 50.364 0.511 42.434 0.220
[ % —-1127.855 1.310 —2.598 0.342 15.778 0.173
[ 614.954 1.049 34.824 0.279 32.573 0.123
Y11 —2.208 0.772 0.409 0.201 0.382 0.080
Y22 28.216 0.210 -0.145 0.052 0.010 0.033
Yaa 2.277 0.510 0.397 0.116 0.556 0.051
Y12 —1.866 2.396 -0.018 0.564 0.346 0.274
Y13 -0.008 0.215 1.263 0.077 0.128 0.034
Y23 —18.769 0.331 -0.114 0.094 -0.514 0.041

ag° denotes the standard deviation obtained by least-squares.
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stants of higher vibrational states are influenced
by various interactions which are not taken into
account in Nielsen’s second-order expression for
the vibrating rotor. Therefore, these interaction
effects should be eliminated before the rotational
constants are applied for calculating the a; and v,
constants. Among these various interactions,
Fermi resonance is the strongest and should be
considered first.

The details of the calculation of Fermi reso-
nance contributions are not described in this arti-
cle but the principle applied is as follows: as
Fermi resonance is directly connected with the
cubic force constants, a tentative set of force
constants was first assumed and the Fermi reso-
nance contributions were calculated and sub-
tracted from the rotational constant increments.
By using the corrected increments the a; and vy;
constants were evaluated, and on the basis of
these o, constants the force constants of the mole-
cule were calculated. The force constants thus
obtained were used to calculate the resonance
contributions in the second cycle. Iterations were
carried out until the assumed force constants co-
incided with the force constants thus obtained.
The final Fermi resonance contributions are
shown in Table 3. It should be noted that the
Fermi resonance contributions are of the same
order of magnitude as, or sometimes larger than,
those of the vy; constants. They are definitely

Table 3. Contributions of Fermi and Darling-Dennison
resonances to the rotational constant increments
(in MHz).

State A B c

Fermi resonances

(100) 2.6839 —-0.9578 —-0.9202
(010) 22723 0.0469 0.0101
(001) -0.7112 —1.4581 —-1.2746
(200) 7.6069 —2.4938 —2.3671
(020) 2.9629 0.0081 —-0.0218
(002) 1.2871 -3.9718 —3.5244
(110) 13.0940 —-0.7444 -0.8767
(101) —5.5433 —3.4964 -3.1593
(011) 1.2679 —1.3544 —1.2034
(030) 3.6954 -0.0792 —-0.0890
Darling-Dennison resonances

(200):(002) 0.4310 —0.0098 —~0.0062
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greater than the standard deviations of the rota-
tional constant increments.

The Darling-Dennison effect was also treated
in the same way. It affects only the (200) and
(002) states and is weaker than the Fermi terms,
but it is still of the same order of magnitude as the
standard deviations of the rotational constant in-
crements.

In the iteration process described above, the
Fermi and the Darling-Dennison resonances
were treated as “constraints” in the least-squares
calculation of s and vy;’s from the rotational
constant increments. When the constraints are
released, the deviations of unknown constants
will increase: that is, their standard deviations
will increase relative to those obtained by the
constrained least-squares, probably by a factor of
two or three. Accordingly, the standard devia-
tions of physical quantities derived from the a;’s
or v;’s would also increase similarly.

(IIT) Rotational constants and moments of inertia
of the equilibrium configuration. Having obtained
the a, and y; constants, the rotational constants of
the equilibrium configuration are easily calcu-
lated from those of the ground state by the use of
eqn. (1). Corresponding moments of inertia were
calculated from:

I(A) = hi8n?A, )

for three rotational constants, A, B and C. Cor-
rections were made for the contributions due to
electronic interactions, which were computed
with g-factors reported by Pochan, Stone and
Flygare.” The final moments of inertia to be used
for the calculation of the molecular geometry are
listed in Table 4.

(IV) Molecular geometry, rt, and 6,. A simple
least-squares fit to the three components of the
moment of inertia gave the bond distance r, and
bond angle 8., as shown in Table 4.

(V) Standard deviations. The standard devia-
tions of the physical quantities are calculated at
each step of the computations. In deriving a
quantity from known parameters by mathemat-
ical relation, variances were calculated by the law
of error propagation, using the standard devia-
tions of the initial quantities (we designate the
results as of). When a least-squares calculation
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Table 4. Rotational constants, moments of inertia and the molecular structure of SO, in the equilibrium

configuration.

A B c
Rotational constants/MHz 60502.423(953) 10358.784(257) 8845.014(116)
Electronic moments of inertia/amu A2 0.002747(2) 0.003085(58) 0.002745(61)
Moments of inertia corrected/amu A2 8.35029(15) 48.78440(126) 57.13442(86)
Inertia defect/amu A2 —0.00027(143)
r/A 1.43080 (0" =1)
0,/° 119.329 (6" =2)

was performed the standard deviations were cal-
culated as usual, i.e. by their deviations from the
observed values (we designate them as o). For
comparison, the o®s were also calculated using
the standard deviations of the initial rotational
constant increments, and the larger one for o
and o® was taken as an error limit estimate. As it
can be discussed as to whether the error limit
should be taken as 20 or 30, “one sigma” is
simply given throughout this article.

It is noted here that the errors in Planck’s
constant and in Avogadro’s number were also
taken into account in the error estimate for the
moments of inertia. However, errors in these
constants give no contributions to the standard
deviation of the inertia defect, since the inertia
defect is extremely small owing to cancellation of
the three components.

(V) Correlations. In order to evaluate exactly the
error limits for the final results, we should take
into account correlations between the spectro-

scopic constants. Besides correlations due to the
mathematical relations used in the calculations,
there are correlations which arise from the fact
that the rotational constants A, B and C are not
directly observable quantities but are derived si-
multaneously from the spectroscopic frequencies
observed for a vibrational state. Fortunately,
however, the mathematical relationships of a’s
and v;’s to the rotational constant increments are
separated for each of A, B and C, so that the
correlation factors between A and B, A and C, or
B and C have no effect on the final sigma values.

On the other hand, in the least-squares calcula-
tion of r, and 6, from the three components of the
moments of inertia, these correlations should be
taken into account. It turned out, however, that
the correlations due to this origin have no appre-
ciable influence on the standard deviations of r,
and 6,. We have therefore neglected them in this
report.

Table 5. Comparison of the equilibrium structure obtained using different approximations.

Simple Watson

Simple Nielsen

Nielsen approximation corrected

approximation approximation for Fermi and DD resonances
A/MHz 60501.728(1449) 60501.702(1514) 60502.423(953)
Bo/MHz 10359.244(10) 10359.115(275) 10358.784(257)
Co/MHz 8845.114(7) 8845.308(114) 8845.014(116)
Ag/amu A2 +0.00115(23) —0.00071(151) —0.00027(143)
rJ/A 1.43079 (o =1)? 1.43079 (6" = 1) 1.43080 (o = 1)
0,/° 119.327 (c®2) 119.327 (6" =2) 119.329 (6*=2)

4P denotes the standard deviation obtained by least-squares. °c” denotes the standard deviation obtained

using the law of error propagation.
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Results and discussion

As shown in Table 4, the second-order consid-
eration resulted in r, = 1.43080 A (of=1) and 6,
= 119.329° (6*=2). As described above in section
(IT), the real standard deviations are greater than
those given above, probably by a factor of two or
three, when we release the constraints of the
Fermi and Darling-Dennison resonances in the
least-squares calculation. Even so, the results re-
ported in this article provide the most accurate
values of the bond distance and bond angle
among those reported for triatomic molecules. In
a previous article® we gave a value r, =
1.4308+0.0002 A. As a result of the develop-
ment of spectroscopoic techniques in recent
years, coupled with elaborate considerations con-
cerning the error limits, the bond distance was
refined by one order. The interatomic distances
in diatomic molecules are usually determined to
six places of decimals.” Owing to the fact that
polyatomic molecules are subject to various kinds
of interactions, the error limits obtained in this
article may be the best ones obtained for poly-
atomic molecules.

In order to see more precisely the effects of the
improvements, the molecular structure and in-
ertia defect were also computed, either by ne-
glecting Fermi and Darling-Dennison resonances
in the Nielsen approximation,® or by neglecting
centrifugal distortion effects, i.e. in the Watson
approximation.!® As shown in Table 5, the inertia
defect of the 7 -structure was definitely improved
at each step of approximation and finally drop-

Table 6. Mean values of corrections to the rotational
constants of SO, on going from the Watson to the
Nielsen approximation (in MHz).

State A B c

(000) -0.0252(12) —0.1352(13) 0.1462(13)
(100)  —0.0291(12) —0.1382(13)  0.1512(12)
(010) —0.0299(38) —0.1500(37) 0.1633(38)
(001)  —0.0210(11) —0.1303(11)  0.1391(11)
(200) —0.0330(12) —0.1412(12)  0.1562(12)
(020) —0.0349(63) —0.1644(62) 0.1801(63)
(002) —0.0169(9) —0.1253(9)  0.1322(9)
(110)  —0.0338(38) —0.1529(37) 0.1682(37)
(101)  —0.0249(11) —0.1333(1)  0.1442(1)
(011)  —-0.0257(36) —0.1452(36)  0.1563(36)
(030) —0.0401(89) —0.1785(87) 0.1966(89)
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ped below its standard deviation, as is required
by the theory. This means that the treatment
described in this article may well manifest the
real situation for SO, molecule. It is true that
interactions of even higher order do exist for the
vibrational states. For instance, for the NO, mol-
ecule, Hoy'' showed that higher-order Coriolis
interactions resulted in significant corrections to
the rotational constants. Barbe and coworkers'
carried out the analysis of the rotational structure
of the spectra of ozone by taking Coriolis interac-
tions into account. Considering these factors, a
critical examination of Coriolis corrections must
be the next problem for the SO, molecule also.
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Appendix

Corrections for transformation of the rotational
constants from the Watson to the Nielsen
approximation

As is well known, the rotational constants in the
Nielsen approximation are given in terms of t’s
by the relations (A1)-(A3):"

AN = A¥ — 16 R, + (12) Ty

(A1)
BY = BY + 16 R(A—C)(B—C) + (1/2) T
(A2)
C¥ = C¥ — 16 R(A—B)(B=C) — (3/4) Ty
(A3)
where
R6 = (1/64)(tbhbb + Tecee — 2Tbbcc)’ (A4)

On the other hand, the centrifugal distortion con-
stants, A;, A;, Ay, O, and Oy have the following
relationships (A5-A9) to the T’ constants:!

Ay = —(1/8) (T + T'eeec) (AS)

Ak = (38)(T poop + T'ecec)



= (VA s + Toee + T aace) (A6)
Ag = —(V4A)(T 202 + Toovd + T'ccee)

+ (1/4)(V yaor + T'obee + T'aace) (A7)
Oy = —(116)(V oy, — T ccec) (A8)

O = (1/8)v'yun(B—A)/(B—C)
+ (118)7 o (C—A)(B-C)

+ (1/8)[r,aacc - tlaabb + T,cccc(zA—B_C)/(B_C)]'

(A9)

Between t and t’ there exist the following rela-
tions:

T'aaas = Taasa © Tbbbd = Tobvb © T'ecce = Tecee  (A10)
T’bbcc = Thbee - 1:'aacc = Taacc (All)
and

T'Jaabb = Taabb + zrabab' (A12)

Moreover, among t there are three planarity con-
ditions:!

Tocce = taaaa(C/A)4 + 2’l:aabb(ca/IéB)z

+ Tyuop(C/B)* (A13)
Tovee = Tonbb(C/B)? + Toapp(C/A)? (A14)
and

Taace = Taaaal C/A) + Toann(C/B)*. (A15)

Thus, for seven unknown parameters, T,,.., Tobob»
Tecees Taabbs Taaces Tovee AN Topap, W have eight rela-
tions. We can therefore derive three sets of t’s for
the choice of two relations from three planarity
conditions. By using these constants the rota-
tional constants in the Nielsen approximation
were calculated for each of the three sets of T’s
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and their average values were used for the calcu-
lations in this survey. Table 6 shows the correc-
tions from the Watson to the Nielsen approxima-
tion.

The centrifugal distortion constants for the
higher vibrational states used in the above calcu-
lations were calculated from those of the (000),
(100), (010) and (001) states’ by assuming a
linear vibrational dependence. For some of these
higher states, the centrifugal distortion constants
were already available from infrared measure-
ments. Nevertheless, we used the calculated val-
ues for all of them, in order to maintain consist-
ency in the corrections.

References

1. Helminger, P. A. and De Lucia, F. C. J. Mol.Spec-
trosc. 111 (1985) 66.
2. Coudert, L.., Maki, A. G. and Olson, W.B. J. Mol.
Spectrosc. 124 (1987) 437.
3. Guelachvili, G., Naumenko, O. V. and Ulenikov,
O.N. J. Mol. Spectrosc. 125 (1987) 128.

. Saito, S. J. Mol. Spectrosc. 30 (1969) 1.

. Nielsen, H. H. Rev. Mod. Phys. 23 (1951) 90.

6. Darling, B. T. and Dennison, D. M. Phys. Rev. 57
(1940) 128.

7. Pochan, J.M., Stone, R.G. and Flygare, W.H.
J. Chem. Phys. 51 (1969) 4278.

8. Morino, Y., Kikuchi, Y., Saito, S. and Hirota, E.
J. Mol. Spectrosc. 13 (1964) 95.

9. Huber, K. P. and Herzberg, G. Molecular Spectra
and Molecular Structure. IV. Constants of Diatomic
Molecules, Van Nostrand Reinhold Co., New York
1978.

10. Watson, J. K. G. J. Chem. Phys. 46 (1967) 1935; 48
(1968) 181; 48 (1968) 4517.

11. Hoy, A.R. J. Mol. Spectrosc. 86 (1981) 55.

12. Flaud, J.-M., Camy-Peyret, C., Barbe, A., Se-
croun, C. and Jouve, P. J. Mol. Spectrosc. 80
(1980) 185; Pickett, H. M., Cohen, E. A. and Mar-
golis, J. S. J. Mol. Spectrosc. 110 (1985) 186.

13. Kivelson, D. and Wilson, E. B., Jr. J. Chem. Phys.
20 (1952) 1575.

14. Oka, T. and Morino, Y. J. Phys. Soc. Jpn. 16
(1961) 1235.

W &

Received January 4, 1988.

351



